Population Association of America (PAA) 2013 Annual Meeting
11–13 April
Abstract
"Model choice in understanding the changing covariates of infant mortality: An illustration using Kenya data"
Sam Wangila Wafula
Covariate estimates of infant mortality are fraught with measurement and choice issues. Standard regression models fail to account for censoring while survival models such as Cox regression may assume the proportionality assumption and fail to test for it. Statisticians are also divided on which parametric regression model to use when the proportionality assumption is violated. Some advocate that method choice should be guided by the level of log likelihood in a nested model after the Akaike Information Criteria (AIC). Others argue that method choice should be based purely on theory of the event under study. This study uses the merged Kenya Demographic and Health survey of 2003-2008 to shed light on the best method choice that can yield robust estimates using infant mortality as an illustration. Findings show that that theory driven model selection produces better estimates than models based on the lowest values of the AIC log likelihood estimates.
Return to: Guide to Population Council activities
Offsite link: PAA 2013 conference Web site
Media inquiries
pubinfo@popcouncil.org; +1 212 339 0509
Contacts and Resources
- Office of Strategic Communications
pubinfo@popcouncil.org
+1 212 339 0509
- Population Council experts are available to discuss global health issues. Contact pubinfo@popcouncil.org for more information.
What's New
For 60 years, the Population Council has changed the way the world thinks about important health and development issues. Explore an interactive timeline of the Council's history, learn more about some of our key contributions, and watch a short video about why your support is so important to us.
Get Involved
- Make a contribution to the Population Council
- Honor a loved one with a gift in his or her name
- Sign up to receive e-mail announcements