Abstract
Rapid and slow mechanisms for loss of cell adhesiveness during fertilization in Chlamydomonas (HTML)
Hunnicutt,Gary R.; Snell,William J.
Developmental Biology 147(1): 216-224
Publication date: 1991
Although vegetative cells, gametes, and zygotes of the biflagellated alga Chlamydomonas bear flagella, only the flagella of mt and mt gametes are adhesive. The molecules responsible for adhesiveness, mt and mt agglutinins, are long rod-shaped glycoproteins displayed on the flagellar membrane. These flagellar agglutinins, which gametes use both as adhesion and signaling molecules during the early events of fertilization, are lost from the flagella during adhesion. Flagellar adhesiveness can be maintained, however, by recruitment and activation of preexisting, inactive agglutinins from the plasma membrane of the cell body (Hunnicutt et al., 1990. J. Cell Biol. 111, 1605-1616) unless the gametes of opposite mating types fuse to form zygotes. Upon cell fusion, flagellar adhesiveness is lost. In the studies presented here, we have employed an in vitro bioassay to measure agglutinins in both cell bodies and flagella at various times during gametogenesis, during fertilization, and after zygote formation. By use of the bioassay, which can detect agglutinins that are functionally inactive in vivo, we found that vegetative cells are devoid of agglutinins. These adhesion molecules appear only after gametogenesis is underway with the cell body agglutinins appearing first and then the flagellar agglutinins. Surprisingly, 30 min after zygote formation, when the zygotes' flagella are no longer adhesive, the flagellar agglutinin activity detectable with the bioassay remains high. One interpretation of these results is that zygotes continue to recruit agglutinins from the cell body to the flagella, but cell fusion abrogates activation of the agglutinins. Within 45-90 min after fusion both the cell body and flagellar agglutinins are lost and can be detected in the medium. These mechanisms, which render the zygotes nonadhesive to other zygotes and unmated gametes, contribute to the Chlamydomonas equivalent of a block to polyspermy.
What's New
For 60 years, the Population Council has changed the way the world thinks about important health and development issues. Explore an interactive timeline of the Council's history, learn more about some of our key contributions, and watch a short video about why your support is so important to us.
Get Involved
- Make a contribution to the Population Council
- Honor a loved one with a gift in his or her name
- Sign up to receive e-mail announcements








