Abstract
A multistep kinase-based Sertoli cell autocrine-amplifying loop regulates prostaglandins, their receptors, and cytokines (PDF) (HTML)
Ishikawa,Tomomoto; Morris,Patricia L.
Endocrinology 147(4): 1706-1716
Publication date: 2006
In Sertoli epithelial cells, the IL-1beta induces prostaglandins (PG) PGE(2), PGF(2alpha) and PGI(2) (7-, 11-, and 2-fold, respectively), but not PGD(2), production. Cyclohexamide pretreatment inhibiting protein synthesis prevents IL-1beta increases in PG levels, indicating that induction requires de novo protein synthesis. IL-1beta-regulated PGE(2) and PGF(2alpha) production and cytokine expression require activation of cyclooxygenase-2 (COX-2) and c-Jun NH(2)-terminal kinase, as shown using specific enzyme inhibition. PGE(2) and PGF(2alpha) stimulate expression of IL-1alpha, -1beta, and -6, findings consistent with PG involvement in IL signaling within the seminiferous tubule. PGE(2) and PGF(2alpha) reverse COX-2-mediated inhibition of IL-1beta induction of cytokine expression and PG production. Sertoli PG receptor expression was determined; four known E-prostanoid receptor (EP) subtypes (1-4) and the F-prostanoid and prostacyclin prostanoid receptors were demonstrated using RNA and protein analyses. Pharmacological characterization of Sertoli PG receptors associated with cytokine regulation was ascertained by quantitative real-time RT-PCR analyses. IL-1beta regulates both EP(2) mRNA and protein levels, data consistent with a regulatory feedback loop. Butaprost (EP(2) agonist) and 11-deoxy PGE(1) (EP(2) and EP(4) agonist) treatments show that EP(2) receptor activation stimulates Sertoli cytokine expression. Consistent with EP(2)-cAMP signaling, protein kinase A inhibition blocks both IL-1beta- and PGE(2)-induced cytokines. Together, the data indicate an autocrine-amplifying loop involving IL-1beta-regulated Sertoli function mediated by COX-2-induced PGE(2) and PGF(2alpha) production. PGE(2) activates EP(2) and/or EP(4) receptor(s) and the protein kinase A-cAMP pathway; PGF(2alpha) activates F-prostanoid receptor-protein kinase C signaling. Further identification of the molecular mechanisms subserving these mediators may offer new insights into physiological events as well as proinflammatory-mediated pathogenesis in the testis.
What's New
For 60 years, the Population Council has changed the way the world thinks about important health and development issues. Explore an interactive timeline of the Council's history, learn more about some of our key contributions, and watch a short video about why your support is so important to us.
Get Involved
- Make a contribution to the Population Council
- Honor a loved one with a gift in his or her name
- Sign up to receive e-mail announcements








