Journal Article

Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells

Exposure of humans to bisphenol A (BPA), a monomer in polycarbonate plastics and a constituent of resins used in food packaging and dentistry, is significant. In this report exposure of rats to 2.4 µg/kg·d (a dose that approximates BPA levels in the environment) from postnatal d 21–35 suppressed serum LH (0.21 ± 0.05 ng/ml; vs. control, 0.52 ± 0.04; P < 0.01) and testosterone (T) levels (1.62 ±0.16 ng/ml; vs. control, 2.52 ± 0.21; P < 0.05), in association with decreased LHβ and increased estrogen receptor β pituitary mRNA levels as measured by RT-PCR. Treatment of adult Leydig cells with 0.01 nM BPA decreased T biosynthesis by 25% as a result of decreased expression of the steroidogenic enzyme 17α-hydroxylase/17-20 lyase. BPA decreased serum 17β-estradiol levels from 0.31 ± 0.02ng/ml (control) to 0.22 ± 0.02, 0.19 ± 0.02, and 0.23 ± 0.03 ng/ml in rats exposed to 2.4 µg, 10µg, or 100 mg/kg·d BPA, respectively, from 21–35 d of age (P < 0.05) due to its ability to inhibit Leydig cell aromatase activity. Exposures of pregnant and nursing dams, i.e. from gestation d 12 to postnatal d 21, decreased T levels in the testicular interstitial fluid from 420 ± 34 (control)to 261 ± 22 (P < 0.05) ng/ml in adulthood, implying that the perinatal period is a sensitive window of exposure to BPA. As BPA has been measured in several human populations, further studies are warranted to assess the effects of BPA on male fertility.