Comprehensive National Nutrition Survey
Jharkhand
Preliminary Factsheet
2017
About the CNNS

The Comprehensive National Nutrition Survey (CNNS) is the first ever national nutrition survey covering 112,316 pre-schoolers, school-age children, and adolescents in rural and urban areas across 30 states of India. The CNNS provides national and state level representative data for nutritional status and micronutrient deficiencies among children and adolescents from birth to 19 years and estimates of biomarkers for non-communicable diseases (NCDs) among those aged 5-19 years.

Methodology: The CNNS adopted a multi-stage, stratified, probability proportion to size cluster sampling design. Survey questions were administered at both the household and respondent levels. The household questionnaire captured information on the usual residents and visitors who stayed in the house the previous night, socio-economic characteristics and water and sanitation facilities in the households. Through the individual questionnaire data were collected on the respondent’s background characteristics, hygiene practices, infant and young child feeding practices (IYCF), dietary diversity, morbidity status, and cognitive development of children. Computer Assisted Personal Interview (CAPI) tools were used to collect survey data.

Indicators: Several anthropometric measurements were collected from survey participants including measurements of height, weight, Mid-Upper Arm Circumference (MUAC) and Triceps Skinfold Thickness (from participants aged 0-19 years), Subscapular Skinfold Thickness (from participants aged 1-19 years) and waist circumference and handgrip strength (from participants aged 5-19 years). In order to estimate prevalence of micronutrient deficiencies, and NCDs among survey participants, biological samples were collected from about half of the survey participants aged 1-19 years. A robust quality assurance and monitoring mechanism was established to ensure data quality during fieldwork.

CNNS captures data across three age groups – children under 5, children aged 5–9 years and adolescents aged 10–19 years.

CNNS provides for the first time biomarkers of micronutrient deficiencies and non-communicable diseases across 30 states of India.
Stakeholders: Under the overall leadership and guidance of the Ministry of Health and Family Welfare (MoHFW) and Technical Advisory Committee (TAC) designated by the MoHFW and in collaboration with the United Nations Children’s Fund (UNICEF), the CNNS was implemented by multiple partners. Aditya and Megha Mittal provided financial support for the survey.

Several national and international organizations provided technical and quality assurance support. The Population Council has served as the lead agency to implement the survey. The Centre for Disease Control (CDC) in Atlanta, USA, the All India Institute of Medical Sciences (AIIMS), New Delhi, the National Institute of Nutrition (NIN), Hyderabad, and Clinical Development Services Agency (CDSA), New Delhi provided quality assurance support for the biomarker component. The Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh and Kalawati Saran Children’s Hospital, New Delhi, provided concurrent monitoring support for the household survey and anthropometric measurements.

Data: This fact sheet provides information on key indicators for the state of Jharkhand where the CNNS was conducted from March 3 through July 4, 2017 and gathered household and anthropometry data from 1,226, 1,230 and 1,093 and biological samples from 681, 590 and 520 children aged 0-4 years (1-4 years for biological sample), 5-9 years, and adolescents aged 10-19 years, respectively. In Jharkhand, survey and anthropometry data were collected by KANTAR Public and Super Religare Laboratories (SRL) Ltd collected biological samples.
Jharkhand – Key Anthropometric Indicators

<table>
<thead>
<tr>
<th>Anthropometric profile</th>
<th>Male</th>
<th>Female</th>
<th>Urban</th>
<th>Rural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children under age 5 years who are stunted (height-for-age)¹ (%)</td>
<td>35.4</td>
<td>37.3</td>
<td>23.6</td>
<td>38.3</td>
<td>36.2</td>
</tr>
<tr>
<td>Children under age 5 years who are severely stunted (height-for-age)² (%)</td>
<td>13.5</td>
<td>15.1</td>
<td>7.0</td>
<td>15.3</td>
<td>14.1</td>
</tr>
<tr>
<td>Children under age 5 years who are wasted (weight-for-height)¹ (%)</td>
<td>29.1</td>
<td>29.1</td>
<td>22.1</td>
<td>30.2</td>
<td>29.1</td>
</tr>
<tr>
<td>Children under age 5 years who are severely wasted (weight-for-height)² (%)</td>
<td>5.8</td>
<td>7.1</td>
<td>5.6</td>
<td>6.5</td>
<td>6.4</td>
</tr>
<tr>
<td>Children under age 5 years who are underweight (weight-for-age)¹ (%)</td>
<td>39.6</td>
<td>42.4</td>
<td>30.0</td>
<td>45.0</td>
<td>42.9</td>
</tr>
<tr>
<td>Children under age 5 years who are severely underweight (weight-for-age)² (%)</td>
<td>14.1</td>
<td>17.4</td>
<td>9.6</td>
<td>16.4</td>
<td>15.5</td>
</tr>
<tr>
<td>Children aged 6-59 months with MUAC <12.5cm (%)</td>
<td>4.2</td>
<td>9.2</td>
<td>3.3</td>
<td>6.7</td>
<td>6.2</td>
</tr>
<tr>
<td>Children aged 6-59 months with MUAC <11.5cm (%)</td>
<td>0.1</td>
<td>1.4</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Children aged 6-59 months with MUAC-for-age < -2 SD³ (%)</td>
<td>12.2</td>
<td>12.8</td>
<td>5.8</td>
<td>13.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Children aged 6-59 months with MUAC-for-age < -3 SD³ (%)</td>
<td>1.6</td>
<td>0.5</td>
<td>0.9</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Children under age 5 years with triceps skinfold thickness-for-age < -2 SD³ (%)</td>
<td>10.6</td>
<td>9.1</td>
<td>9.2</td>
<td>10.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Children under age 5 years with triceps skinfold thickness-for-age < -3 SD³ (%)</td>
<td>0.8</td>
<td>1.6</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Children under age 5 years with triceps skinfold thickness-for-age > +2 SD³ (%)</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

¹Below -2 standard deviations (SD), based on the WHO standards
²Below -3 standard deviations, based on the WHO standards
³Based on WHO standards
Jharkhand – Key Anthropometric Indicators

Children under age 5 years with triceps skinfold thickness-for-age >+3 SD (%)
- Male: 0.0
- Female: 0.0
- Urban: 0.0
- Rural: 0.0
- Total: 0.0

Children aged 1-4 years with subscapular skinfold thickness-for-age >+3 SD (%)
- Male: 10.6
- Female: 12.0
- Urban: 9.6
- Rural: 11.4
- Total: 11.1

Children aged 1-4 years with subscapular skinfold thickness-for-age >+2 SD (%)
- Male: 1.7
- Female: 1.1
- Urban: 2.5
- Rural: 1.3
- Total: 1.5

Children aged 1-4 years with subscapular skinfold thickness-for-age >+1 SD (%)
- Male: 0.8
- Female: 1.0
- Urban: 3.8
- Rural: 0.4
- Total: 0.9

Children aged 1-4 years with subscapular skinfold thickness-for-age >+0 SD (%)
- Male: 0.1
- Female: 0.1
- Urban: 0.4
- Rural: 0.0
- Total: 0.1

Children aged 5-9 years who are stunted (height-for-age)1 (%)
- Male: 22.2
- Female: 27.5
- Urban: 16.4
- Rural: 26.1
- Total: 24.9

Children aged 5-9 years who are severely stunted (height-for-age)2 (%)
- Male: 5.3
- Female: 11.6
- Urban: 3.3
- Rural: 9.2
- Total: 8.5

Children aged 5-9 years who are moderate or severely thin (BMI for age) z-score < -2 SD3 (%)
- Male: 28.6
- Female: 27.2
- Urban: 29.8
- Rural: 27.6
- Total: 27.9

Children aged 5-9 years who are severely thin (BMI for age) z-score < -3 SD (%)
- Male: 5.4
- Female: 4.5
- Urban: 10.1
- Rural: 4.2
- Total: 4.9

Children aged 5-9 years who are overweight or obese (BMI for age) z-score >+1 standard deviations4 (%)
- Male: 0.4
- Female: 0.6
- Urban: 1.9
- Rural: 0.3
- Total: 0.5

Children aged 5-9 years who are obese (BMI for age) z-score >+2 SD (%)%
- Male: 0.2
- Female: 0.4
- Urban: 0.6
- Rural: 0.2
- Total: 0.3

1 Below -2 standard deviations (SD), based on the WHO standards
2 Below -3 standard deviations, based on the WHO standards
3 Based on WHO standards
4 Based on WHO standards
<table>
<thead>
<tr>
<th>Anthropometric profile</th>
<th>Sex</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Adolescents aged 10-14 years who are moderate or severely thin (BMI for age) z-score < -2 SD³ (%)</td>
<td>37.1</td>
<td>28.2</td>
</tr>
<tr>
<td>Adolescents aged 15-19 years who are moderate or severely thin (BMI for age) z-score < -2 SD³ (%)</td>
<td>26.2</td>
<td>17.4</td>
</tr>
<tr>
<td>Adolescents aged 10-19 years who are moderate or severely thin (BMI for age) z-score < -2 SD³ (%)</td>
<td>33.0</td>
<td>23.9</td>
</tr>
<tr>
<td>Adolescents aged 10-14 years who are severely thin (BMI for age) z-score < -3 SD³ (%)</td>
<td>10.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Adolescents aged 15-19 years who are severely thin (BMI for age) z-score < -3 SD³ (%)</td>
<td>5.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Adolescents aged 10-19 years who are severely thin (BMI for age) z-score < -3 SD³ (%)</td>
<td>8.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Adolescents aged 10-14 years who are overweight or obese (BMI for age) z-score > +1 SD³ (%)</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Adolescents aged 15-19 years who are overweight or obese (BMI for age) z-score > +1 SD³ (%)</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Adolescents aged 10-19 years who are overweight or obese (BMI for age) z-score > +1 SD³ (%)</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Adolescents aged 10-14 years who are obese (BMI for age) z-score > +2 SD³ (%)</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Adolescents aged 15-19 years who are obese (BMI for age) z-score > +2 SD³ (%)</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Adolescents aged 10-19 years who are obese (BMI for age) z-score > +2 SD³ (%)</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

³Based on WHO standards
Jharkhand – Key Indicators of Micronutrient Deficiencies

<table>
<thead>
<tr>
<th>INDICATORS</th>
<th>CHILDREN AGED 1-4 YEARS</th>
<th>CHILDREN AGED 5-9 YEARS</th>
<th>ADOLESCENTS AGED 10-19 YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of anaemia<sup>4,5</sup> (%)</td>
<td>43.8 (38.5-49.2)</td>
<td>34.4 (27.2-42.4)</td>
<td>34.0 (29.1-39.2)</td>
</tr>
<tr>
<td>Prevalence of anaemia - males<sup>4,5</sup> (%)</td>
<td>42.9 (36.8-49.2)</td>
<td>31.8 (26.2-38.1)</td>
<td>16.3 (10.4-24.8)</td>
</tr>
<tr>
<td>Prevalence of anaemia - females<sup>4,5</sup> (%)</td>
<td>45.3 (37.7-53.1)</td>
<td>37.1 (25.0-51.1)</td>
<td>51.7 (43.7-59.7)</td>
</tr>
<tr>
<td>Prevalence of low serum ferritin<sup>6,7</sup> (%)</td>
<td>13.5 (8.5-20.8)</td>
<td>5.1 (3.5-7.2)</td>
<td>10.1 (6.0-16.5)</td>
</tr>
<tr>
<td>Prevalence of folate deficiency<sup>6,7</sup> (%)</td>
<td>5.3 (3.1-8.8)</td>
<td>12.5 (7.2-20.9)</td>
<td>23.8 (15.1-35.4)</td>
</tr>
<tr>
<td>Prevalence of vitamin B12 deficiency<sup>6,8</sup> (%)</td>
<td>17.6 (11.0-27.0)</td>
<td>12.9 (6.9-23.0)</td>
<td>22.0 (14.4-32.2)</td>
</tr>
<tr>
<td>Prevalence of serum 25-hydroxy vitamin D <12ng/ml<sup>9</sup> (%)</td>
<td>19.2 (13.1-27.2)</td>
<td>20.0 (11.4-32.7)</td>
<td>29.6 (22.9-37.4)</td>
</tr>
<tr>
<td>Prevalence of vitamin A deficiency<sup>6,10</sup> (%)</td>
<td>42.7 (33.1-52.9)</td>
<td>42.3 (31.7-53.5)</td>
<td>29.8 (20.8-40.7)</td>
</tr>
<tr>
<td>Prevalence of zinc deficiency<sup>11</sup> (%)</td>
<td>28.5 (18.9-40.5)</td>
<td>21.9 (16.0-29.0)</td>
<td>49.8 (40.0-59.7)</td>
</tr>
<tr>
<td>Median urinary iodine concentration(μg/l)<sup>6</sup></td>
<td>150</td>
<td>122</td>
<td>121</td>
</tr>
</tbody>
</table>

⁴CNNS estimated anaemia using the gold standard method, i.e., haemoglobin concentration in venous whole blood sample analysed by cyanmethaemoglobin method in the laboratory using automated haematology counter. These estimates cannot be directly compared with other large scale surveys in India that estimate anaemia from capillary blood using Hemo Cue analyser.

⁵WHO standard cut-off

⁶For children aged 12-59 months: serum ferritin <12 μg/l; for children/adolescents aged ≥5 years: serum ferritin <15 μg/l; all cases with C-reactive protein > 5 mg/L were excluded

⁷Erythrocyte folate < 151 ng/ml

⁸Serum vitamin B12 < 203 pg/ml

⁹Vitamin D deficiency; Institute of Medicine (IOM) standard cut-off

¹⁰Serum retinol < 20 μg/dl; all cases with C-reactive protein > 5 mg/L were excluded

¹¹For children aged 1-9 years: serum zinc < 65 μg/dl; for adolescent girls: serum zinc <70 μg/dl if fasting, < 66 μg/dl if non-fasting; for adolescent boys: serum zinc <74 μg/dl if fasting, <70 μg/dl if non-fasting; International Zinc Nutrition Consultative Group cut-off
<table>
<thead>
<tr>
<th>INDICATORS</th>
<th>CHILDREN AGED 5-9 YEARS</th>
<th>ADOLESCENTS AGED 10-19 YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of high total cholesterol(^{12}) (%)</td>
<td>0.7 (0.2-2.3)</td>
<td>1.3 (0.5-3.3)</td>
</tr>
<tr>
<td>Prevalence of high LDL cholesterol(^{13}) (%)</td>
<td>2.0 (0.6-5.9)</td>
<td>1.4 (0.6-3.2)</td>
</tr>
<tr>
<td>Prevalence of low HDL cholesterol(^{14}) (%)</td>
<td>13.1 (8.0-20.6)</td>
<td>23.6 (20.1-27.6)</td>
</tr>
<tr>
<td>Prevalence of high triglycerides(^{15})</td>
<td>28.4 (17.3-43.0)</td>
<td>18.1 (14.2-22.9)</td>
</tr>
<tr>
<td>Prevalence of high fasting plasma glucose(^{16,17}) (indicative of prediabetes) (%)</td>
<td>11.0 (8.0-15.1)</td>
<td>8.8 (5.7-13.4)</td>
</tr>
<tr>
<td>Prevalence of very high fasting plasma glucose(^{17,18}) (indicative of diabetes) (%)</td>
<td>3.5 (1.3-8.7)</td>
<td>1.8 (0.7-4.3)</td>
</tr>
<tr>
<td>Prevalence of glycosylated haemoglobin concentration 5.7-6.4(^{17}) (%)</td>
<td>15.8 (8.5-27.6)</td>
<td>12.8 (6.3-24.2)</td>
</tr>
<tr>
<td>Prevalence of glycosylated haemoglobin concentration ≥ 6.5(^{17}) (%)</td>
<td>0.6 (0.2-1.8)</td>
<td>1.0 (0.2-5.0)</td>
</tr>
<tr>
<td>Prevalence of high serum creatinine(^{19,20}) (%)</td>
<td>8.8 (3.0-23.2)</td>
<td>8.6 (3.0-22.2)</td>
</tr>
</tbody>
</table>

\(^{12}\)Total cholesterol ≥ 200 mg/dl; Cut-offs taken from National Cholesterol Education Program.

\(^{13}\)LDL ≥ 130 mg/dl; Cut-offs taken from National Cholesterol Education Program.

\(^{14}\)HDL < 40 mg/dl; Cut-offs taken from National Cholesterol Education Program.

\(^{15}\)For children aged 5-9 years: serum triglycerides > 100 mg/dl; and for adolescents aged 10-19 years: serum triglycerides > 130 mg/dl; cut-offs taken from National Cholesterol Education Program.

\(^{16}\)Plasma glucose > 100 mg/dl &<126 mg/dl, indicative of prediabetes.

\(^{17}\)Cut-off taken from Global International Diabetes Federation.

\(^{18}\)Plasma glucose ≥ 126 mg/dl, indicative of diabetes.

\(^{19}\)For children aged 5-12 years: serum creatinine > 0.7 mg/dl; for adolescents aged > 12 years: serum creatinine > 1.0 mg/dl.

\(^{20}\)High serum creatinine was found clustered in few districts. Such clustering has also been reported in public health literature.
The Comprehensive National Nutrition Survey (CNNS) is the first ever national nutrition survey covering over 110,000 pre-schoolers, school-age children, and adolescents in rural and urban areas across 30 states of India.

The CNNS provides national and state level representative estimates from biological samples (blood, urine and stool) for micronutrient deficiencies and non-communicable diseases (NCDs) using best practices in training and field and gold standard laboratory methods.

See CNNS results online: www.NutritionINDIA.info

The survey was conducted with generous financial support from Aditya and Megha Mittal.

Supported by: unicef | for every child

Aditya and Megha Mittal

Partners:

Ministry of Health & Family Welfare,
Government of India
Child Health Division
Nirman Bhavan, New Delhi 110 108
Telephone: 011 – 23061334, 23063398
Email: chmohfw@gmail.com

UNICEF
Nutrition Section
73 Lodi Estate
New Delhi 110 003
Telephone: 011 – 24690401, 24691410
Email: ind.cnns@unicef.org